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Abstract. Monte Carlo simulations of percolation diffusion at and below the percolation
threshold give results in accordance with theory. Above the percolation threshold, however, this
is not the case. It was thought that above the threshold a well-defined crossover point separated
the anomalous and classical diffusion regimes, with the classical diffusion coefficient having the
same critical exponent as the lattice conductivity, but Monte Carlo simulations failed to confirm
this expected behaviour. Analysis of new Monte Carlo results presented here for the square lattice
shows that percolation diffusion is classical only strictly asymptotically. Instead of a crossover,
the approach to classical behaviour is better described as a very slow relaxation. Accounting
for this relaxation enables the critical behaviour of percolation diffusion to be confirmed with a
corresponding critical exponentµ = 1.291± 0.024.

1. Introduction

There has been a great deal of interest in the dynamic properties of the percolation lattice
such as conduction and diffusion which, historically, provided the initial motivation for
the development of percolation theory [1]. The percolation lattice is infinite in extent and
lattice sites or bonds are occupied with a probabilityp. Nearest neighbour sites or bonds
form clusters and for allp > pc there exists an infinite cluster which spans the lattice.
Conduction on the lattice takes place via percolation clusters only. On the infinite lattice
the conductivity,6, is zero for allp < pc and increases to a maximum value asp → 1.
Similarly, diffusion is also confined to percolation clusters. Progress of a diffusing particle
on the lattice is measured by the mean square distance travelled,〈R2〉, in N discrete steps,
as discussed by De Gennes [2].

Below the threshold the trajectory of a diffusing particle is ultimately restricted by
the cluster perimeter but above the threshold diffusion is unbounded. Whenp = 1, the
correlation length of the lattice,ξ , equals zero and the percolation lattice is uniform on all
length scales. Diffusing particles are free to behave classically and the mean square distance
〈R2〉 diffused inN steps obeys the law

〈R2〉 = DN (1)

whereD is the classical diffusion coefficient, in this case equal to unity.
When pc < p < 1, ξ 6= 0 and the fractal cluster structure [3] influences diffusion on

the lattice. It was conjectured by Gefenet al [4] that initially the particle would undergo
anomalous diffusion, obeying the law

R̃ = 〈R2〉1/2 ∝ Nk (2)
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with k ∼= 1
3. The particle was thought to behave classically, withk = 1

2 but D < 1, only
after some characteristic crossover time,τ>, which diverged at the percolation threshold;
there, it is known that percolation diffusion is anomalous for allN .

Static cluster properties such asP∞, the strength of the infinite cluster, andξ are known
to scale with(p − pc) asP∞ ∝ (p − pc)

β asp → pc+ andξ ∝ |p − pc|ν . The values of
the exponentsβ andν are known exactly in two dimensions,β = 5

36, ν = 4
3, and to a high

degree of certainty in three,β = 0.41, ν = 0.88 [5]. In common with these static scaling
laws it is assumed thatD and6 also have a critical dependence on the distance(p − pc).
According to the Einstein relation,D is proportional to6 [6] implying that both dynamic
properties share the same dynamic critical exponent,µ,

6 ∝ D ∝ (p − pc)
µ (3)

asp → pc+.
There is no exact analytical determination ofµ. Neither, aside from the disputed

Alexander–Orbach conjecture [7] from whichµ = 1
2[ν(3d − 4) − β] may be deduced, is

there an exponent relation which definesµ solely in terms of static exponents such asβ or
ν. In the absence of such a theory, percolation diffusion is often studied by Monte Carlo
simulations using the labyrinth ant [2].

Although results of such simulations agree with theory [8, 9] below the threshold, above
the threshold this is not the case. Here, according to the crossover conjecture of Gefenet
al , graphs of〈R2〉 versusN should show initial curvature followed by clear linearity and
according to (1) the slope of the linear region should be equal to the coefficientD allowing
the scaling behaviour ofD to be determined. Following this method, Mitescuet al [10]
found thatµ = 0.98± 0.02 for the square lattice and thatµ = 1.72± 0.03 for the cubic
latice. This latter estimate was then revised toµ = 1.70 ± 0.05 [9], but it was still at
odds with the valueµ ∼= 2.06 which they obtained from exponent relations given in earlier
work below the threshold [11]. This led Mitescuet al [9] to postulate the existence of two
dynamic exponents, one forD and one for6.

In light of this discrepancy, Pandeyet al [8] evaluatedD above the threshold on cubic
lattices of various sizes and found thatµ appeared to increase with the edge length,L, of
the lattice, i.e.µ = 1.71, 1.80 and 1.85 forL = 30, 60 and 180 respectively. If one plots
µ versusL−1 it can be seen that limL→∞ µ ∼= 1.88. On the other hand, simulations carried
out by Pandeyet al [8] at the threshold yielded estimates fork which from the exponent
relation 2k = (2ν − β)/(2ν − β + µ) gaveµ = 1.28± 0.02 for d = 2 andµ = 2.0 ± 0.2
for d = 3.

The cited results for the scaling behaviour ofD above the threshold fail to agree with
that of6. Recent values ofµ obtained from conductivity simulations areµ = 1.299±0.002
on the two-dimensional lattice [12] andµ = 2.003± 0.047 in three dimensions [13]. This
discrepancy fails to satisfy the condition implied by the Einstein relation thatD and6 share
the same critical exponent.

The discrepancy between the expected behaviour of percolation diffusion and that
observed from simulations above the threshold has thus far remained unresolved. The
inconsistency lies with the predicted time-dependent behaviour of percolation diffusion and
is due to the absence of a well-defined crossover time. To investigate this hypothesis, ant-
in-the-labyrinth (AIL) simulations were carried out on the square lattice above the threshold
for N far larger than in previously reported simulations. Analysis of these results, discussed
in the next section, shows that instead of clear crossover behaviour there is in fact a very
slow relaxation to strictly asymptotic classical behaviour.
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2. Results

All simulations were carried out on percolation lattices of sizeL = 1000. Simulations [14]
have shown that only a very small proportion of walks exceed a distanceL2 whenN = L2

andp � 1. The blind AIL algorithm was used and walks were permitted to take place on
all clusters as in [8]. Simulations were carried out for a range ofp, 0.61 < p < 0.7. For
each value ofp, 200 walks were carried out on each of 100 lattice configurations and the
distanceR2 was evaluated after every hundredth step.

For the analysis of the results it was assumed that diffusion, whether anomalous or
classical, may be described by equation (2); recall thatk < 1

2 implies anomalous behaviour
and k = 1

2 implies classical. The local value ofk was estimated for differentN , where
3 6 log(N) 6 6, from the slope of the graph log̃R versus log(N). Plotting the local
value ofk versus log(N) suggests a relaxation to classical behaviour asN increases, with
the progression toward classical behaviour being slower asp → pc+. This is shown in
figure 1 for forp = 0.65 (circles),p = 0.62 (squares) andp = 0.61 (triangles). There is
no indication of a well-defined crossover from anomalous diffusion withk ∼= 1

3 to classical
diffusion with k = 1

2 as proposed by Gefenet al [4]. In view of this behaviour, one is
faced with the difficulty of determiningD since due to the absence of a clear region of
classical diffusion graphs of〈R2〉 versusN are nowhere linear. By plotting the results in
the form R̃/N1/2 versus 1/N1/2, however, linear plots were yielded for sufficiently large
N , emphasising the slow relaxation to classical behaviour wherek = 1

2. Were there a sharp
crossover tok = 1

2 after some timeτ> then such graphs would show̃R/N1/2 equal to a
constant for some range of 1/N1/2 in a well-defined classical region. Figure 2 shows the
graph ofR̃/N1/2 versus 1/N1/2 for p = 0.65 (circles),p = 0.62 (squares) andp = 0.61
(triangles). The tendency to linear behaviour is clearly evident. One can inspect the linear

Figure 1. The behaviour ofk with log(N) for variousp.
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Figure 2. The relaxation to classical diffusion for variousp; the inset shows the leftmost region
for p = 0.62.

behaviour at first glance forp = 0.65. Although the region of linearity is reduced as
the threshold is approached, for example that forp = 0.62 is shown in the inset, linear
behaviour was always observed for some range of 1/N1/2 when the results were plotted in
this fashion. The intercept on the vertical axis ofR̃/N1/2 versus 1/N1/2 is D1/2. ThusD

can be simply estimated from such graphs.
Then, recalling the dynamic scaling lawD ∝ (p − pc)

µ as p → pc+, the estimates
of D were plotted as ln(D) versus ln(p − pc) wherepc = 0.5927. The slope of the linear
region of this graph shown in figure 3 givesµ = 1.291± 0.024 where the error quoted is
the standard error. This is in good agreement with other recent Monte Carlo estimates of
µ for d = 2 percolation systems as shown in table 1, but excludes the value ofµ = 91

72
deduced from the Alexander–Orbach conjecture.

The above treatment of the asymptotic nature of percolation diffusion leads to far more
accurate estimates ofD than can possibly be obtained by simply assuming linearity [10] in
graphs of〈R2〉 versusN , for finite N or by the use of various types ofad hoc correction
terms [9]. Estimates from the results above reveal that to measureD to within 5% of the
value obtained here by such methods would requireN ∼= 9 × 104 time steps atp = 0.65
increasing toN ∼= 1.2×107 time steps forp = 0.61, much larger than have previously been
used. It is for this reason that previous estimates ofµ from the scaling behaviour ofD on
d = 2 andd = 3 percolation lattices have failed to agree withµ obtained from the scaling
behaviour of6. The very slow relaxation behaviour cannot be attributed to the fractal
cluster structure as for large length scales the lattice can be considered to be essentially
uniform. Instead it may be argued [14] that the relaxation is due to the continual impedance
and reflection of the particle’s motion by site vacancies, a time-dependent effect which
cannot be anticipated when discussing percolation diffusion in terms of time-independent
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Figure 3. The scaling behaviour ofD with (p − pc).

Table 1. Values ofµ from various sources.

Value of µ Method Reference

1.291± 0.024 Estimate ofD asN → ∞ Reported here
1.299± 0.002 Bond lattice conductivity [12]
1.297± 0.005 Bond lattice conductivity [15]
1.31± 0.04 Bond lattice conductivity [16]
1.28± 0.02 Diffusion on site lattice;p = pc [8]
1.26± 0.03 Site lattice conductivity [17]
91/72 Alexander–Orbach conjecture [7]
1.0 6 µ 6 1.3 Bond lattice conductivity [18]
1.10± 0.05 Bond lattice conductivity [19]
1.25± 0.05 Site lattice conductivity [19]
0.98± 0.02 Diffusion on site lattice;p > pc [10]

properties such as conductivity. The relaxation is a real effect that must be accounted
for when studying the asymptotic classical behaviour—neglecting it leads to inaccurate
estimates of the dynamic exponent.

3. Conclusion

It has been shown that percolation diffusion above the critical percolation threshold is best
described in terms of a very slow relaxation towards strict asymptotic classical behaviour.
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For sufficiently largeN this relaxation is expressed as

R̃

N1/2
− lim

N→∞
R̃

N1/2
= C

N1/2

whereC is a constant. The critical exponentµ whereD ∝ (p − pc)
µ as p → pc+, for

d = 2 percolation diffusion was found to beµ = 1.291± 0.024. This is the first accurate
estimate of the critical exponent from the scaling behaviour ofD above the percolation
threshold.
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